
QCD phase diagram at large Nc

The standard lore: 

QCD Phase Diagram vs temperature, T, and quark chemical potential, μ

One transition, chiral = deconfined, “semicircle”

Large Nc: 

     Two transitions, chiral ≠ deconfinement 

     Not just a critical end point, but a new “quarkyonic” phase:

Confined, chirally symmetric baryons: massive, parity doubled.

Work exclusively in rotating arm approximation...

McLerran & RDP, 0706.2191, to appear in NPA.
     



 

The first semicircle

ρBaryon ↑

Cabibbo and Parisi ‘75: Exponential (Hagedorn) spectrum limiting temperature,
     or transition to new, “unconfined” phase.  One transition.

Punchline today: below for chiral transition, deconfinement splits off at finite μ.
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Phase diagram, ~ ‘06
Lattice, T ≠ 0, μ = 0: two possible transitions, occur at same T.   Karsch ’06

Persists at μ ≠ 0?  Stephanov, Rajagopal, & Shuryak ‘98:  
     Critical end point where crossover becomes 1st order trans.?

T ↑

μ →



Experiment: freezeout line
Cleymans & Redlich ‘99: Line for chemical equilibriation at freezeout
     ~ semicircle.
N.B.: for T = 0, goes down to ~ nucleon mass.

μBaryon →

T ↑



0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

µB/T0

non-pert

pert

m/T=0.4

m/T=0.4

pert
m/T=0.02

Tc, Bielefeld-Swansea (Nf=2,3)
Tc, Forcrand, Philipsen (Nf=2)
Tc, Forcrand, Philipsen (Nf=3)

Tc, Fodor, Katz (Nf=2+1)
freeze-out Tf, J.Cleymans et. al.

Experiment vs. Lattice

μquark →

Lattice “transition” appears above freezeout line?  Schmidt ‘07

N.B.: small change in Tc with  μ?

T ↑
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Lattice Tc , vs μ

Rather small change in Tc vs μ?  Depends where μc is at T = 0.  Fodor & Katz ‘06

T ↑

μquark →
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Lattice pressure

T →

(e-3p)/T4 ↑

For all μ, pressure fits well with (Cheng et al., 0710.0354)

p(T ) = fpert T 4
− Bfuzzy T 2

− BMIT + . . .
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EoS of nuclear matter
Akmal, Panharipande, & Ravenhall ‘98: Equation of State for nuclear matter, T=0
     E/A = energy/nucleon.  Fits to various nuclear potentials

Anomalously small: binding energy of nuclear matter 15 MeV!
Calc’s reliable to ~ twice nuclear matter density.

E/A ↑

ρBaryon →
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Expansion in large Nc

‘t Hooft ’74: let Nc → ∞, with λ = g2 Nc fixed.

~ Nc2 gluons in adjoint representation, vs ~ Nc quarks in fundamental rep. ⇒ 

Large Nc  dominated by gluons (iff Nf = # quark flavors small)

“Double line” notation.  Useful at small Nc (Yoshimasa Hidaka & RDP)



Large Nc : “planar” diagrams

~ g2 Nc = λ 

Planar diagram, ~ λ2 Non-planar diagram, ~ λ2 /Nc 
Suppressed by 1/Nc 



Quark loops suppressed at large Nc 

Quark loops are suppressed at large Nc, only if Nf (= # quark flavors) is held fixed 

Thus: limit of large Nc , small  Nf 

Quarks can be introduced as external sources.  

Analogous to “quenched” approximation, expansion about Nf = 0. 

Veneziano ‘78: take both Nc and Nf  large.  Not well understood.

∼ g2
= λ ×

1

Nc



Form factors at large Nc 

< J(x)J(0) > ∼ Nc

J ~ (gauge invariant) mesonic current

Infinite # of planar diagrams for < J J >:

XX

XX X X

Confinement => sum over mesons, form factors ~ Nc1/2

< J(x)J(0) > ∼

∫
d4p eip·x

∑
n

< 0|J |n >
1

p2 + m2
n

< n|J |0 >

< J(x)J(0) > ∼ Nc ⇒ < 0|J |n >∼
√

Nc if mn ∼ 1



Mesons & glueballs free at Nc = ∞

With form factors ~ Nc1/2 , 3-meson couplings ~ 1/Nc1/2 ; 4-meson, ~ 1/Nc

For glueballs, 3-glueball couplings ~ 1/Nc , 4-glueball ~ 1/Nc2

Mesons and glueballs don’t interact at Nc = ∞.  
     Large N limit always (some) classical mechanics Yaffe ‘82



Baryons at large Nc 

Witten ‘79: Baryons have Nc quarks, so nucleon mass MN ~ Nc ΛQCD .

Baryons like “solitons” of large Nc limit ( ~ Skyrmion) 

Leading correction to baryon mass:

Appears ~ g4 Nc4 ~ λ2 Nc2 ?

No, iteration of average potential,
mass still ~ Nc .

g2
× Nc × Nc ∼ λNc



Baryons are not free at Nc = ∞ 

Baryons interact strongly.  Two baryon scattering ~ Nc :

g2
× Nc × Nc ∼ λNc

Scattering of three, four... baryons also ~ Nc 

Mesons also interact strongly with baryons, ~ Nc0 ~ 1

g2
× Nc ∼ λ



Skyrmions and Nc = ∞ baryons

L = f2

π tr|Vµ|
2 + κ tr[Vµ, Vν ]2 , Vµ = U†∂µU , U = eiπ/fπ

Witten ‘83; Adkins, Nappi, Witten ‘83: Skyrme model for baryons

Baryon soliton of pion Lagrangian: fπ ~ Nc1/2 ,  κ ~ Nc , mass  ~ fπ2 ~ κ ~ Nc .

Single baryon: at r = ∞, πa = 0, U = 1.  At r = 0,  πa =  π ra/r . 
Baryon number topological: Wess-Zumino ’71, Witten ’83.

Dashen & Manohar ’93, Dashen, Jenkins, & Manohar ‘94:  
     Huge degeneracy of baryons: multiplets of isospin and spin, I = J: 1/2 ... Nc/2.
     Obvious in Skyrme model, as collective coordinates of soliton.

Baryon-meson coupling ~ Nc1/2, cancellations from extended SU(2 Nf) symmetry. 



Towards the phase diagram at Nc = ∞
As example, consider gluon polarization tensor at zero momentum.
     (~ Debye mass2 at leading order, gauge invariant)

Πµµ(0) = g2

((

Nc +
Nf

2

)

T 2

3
+

Nfµ2

2π2

)

= λ
T 2

3
, Nc = ∞

For μ ~ Nc0 ~ 1, at Nc = ∞ the gluons are blind to quarks.

When μ ~ 1, deconfining transition temperature Td(μ) = Td(0)

Chemical potential only matters when larger than mass:
     μBaryon > MBaryon.  Define mquark = MBaryon/Nc ; so μ > mquark .

“Box” for T < Tc ; μ < mquark: confined phase baryon free, since their mass ~ Nc

Thermal excitation ~ exp(-mB/T) ~ exp(-Nc) = 0 at large Nc.
     So hadronic phase in “box” = mesons & glueballs only, no baryons.



Phase diagram at Nc = ∞, I
At least three phases.  At large Nc, can use pressure, P, as order parameter.
Hadronic (confined): P ~ 1.  Deconfined, P ~ Nc2.  Thorn ’81

Quarks or baryons = “quark-yonic”, P ~ Nc.  Chiral symmetry restoration?
     N.B.: mass threshold at mq neglects (possible) nuclear binding, Son

T↑

Td

μ→mq

Hadronic Quarkyonic

Deconfined
↓1st order



Nuclear matter at large Nc 

μBaryon = √kF2 + M2 , kF = Fermi momentum of baryons. 
Pressure of ideal baryons density times energy of non-relativistic baryons:

Pideal baryons ∼ n(kF )
k2

F

M
∼

1

Nc

k5
F

ΛQCD

δPresonances ∼

1

M

k8
F

Λ3
QCD

∼

1

Nc

k8
F

Λ4
QCD

δPtwo body int.′s ∼ Nc
n(kF )2

Λ2
QCD

∼ Nc
k6

F

Λ2
QCD

This is small, ~ 1/Nc .  The pressure of the I = J tower of resonances is as small:

Two body interactions are huge, ~ Nc in pressure.    

At large Nc , nuclear matter is dominated by potential, not kinetic terms!
Two body, three body... interactions all contribute ~ Nc .



µ − mq =
µB − M

Nc

=
k2

F

2MNc

∼

1

N2
c

k2

F

kF ∼

1

N2
c

ΛQCD

Window of nuclear matter
Balancing Pideal baryons ~ Ptwo body int.’s, interactions important very quickly,

For such momenta, only two body interactions contribute.

By the time kF ~ 1, all interactions terms contribute ~ Nc to the pressure.  

But this is very close to the mass threshold,

Hence “ordinary” nuclear matter is only in a very narrow window.

One quickly goes to a phase with pressure P ~ Nc.

So is it baryons, or quarks?



Perturbative pressure
At high density, μ >> ΛQCD,  compute P(μ) in QCD perturbation theory.  

To ~ g4, Freedman & McLerran (’77)3; Ipp, Kajantie, Rebhan, & Vuorinen ‘06

Ppert.(µ) ∼ NcNf µ4 F0(g
2(µ/ΛQCD), Nf )

At μ ≠ 0, only diagrams with at least one quark loop contribute.  Still...

For μ >> ΛQCD, but μ ~ Nc0 ~ 1, calculation reliable.  

Compute P(μ) to ~ g6 , g8... ?  No “magnetic mass” at μ ≠ 0, well defined ∀ (g2)n.



“Quarkyonic” phase at large Nc

As gluons blind to quarks at large Nc, for μ ~ Nc0 ~ 1, confined phase for T <  Td

This includes μ >> ΛQCD!  Central puzzle.  We suggest:

To left: Fermi sea.

Deep in the Fermi sea, k << μ , 
      looks like quarks.

But: within ~ ΛQCD of the Fermi surface,
     confinement => baryons 

We term combination “quark-yonic”

ΛQCD 

μ 

OK for μ >> ΛQCD.  When μ ~ ΛQCD, baryonic “skin” entire Fermi sea.

But what about chiral symmetry breaking?



Skyrmion crystals

Skyrmion crystal: soliton periodic in space.
Kutschera, Pethick & Ravenhall (KPR) ’84;  Klebanov ’85 + ... 
Lee et al , hep-ph/0302019 =>

At low density, chiral symmetry broken
by Skyrme crystal, as in vacuum.
Chiral symmetry restored at
nonzero density: < U > = 0 in each cell.  

Goldhaber & Manton ’87: due to “half” Skyrmion symmetry in each cell.
Forkel, Jackson et al, ’89: excitations are chirally symmetric.

Easiest to understand with “spherical” crystal, KPR ’84, Manton ’87.
Take same boundary conditions as a single baryon, but for sphere of radius R:
     At r = R: πa = 0.  At r = 0,  πa =  π ra/r .  Density one baryon/(4 π R3/3).

At high density, term ~ κ dominates, so energy density ~ baryon density4/3.
     Like perturbative QCD!  Accident of simplest Skyrme Lagrangian.



Schwinger-Dyson equations at large Nc: 1+1 dim.’s

‘t Hooft ‘74: as gluons blind to quarks at large Nc, S-D eqs. simple for quark:
     Gluon propagator, and gluon quark anti-quark vertex unchanged.

To leading order in 1/Nc, only quark propagator changes:

‘t Hooft ‘74: in 1+1 dimensions, single gluon exchange generates linear potential,

g2

2D

∫
dk

eikr

k2
∼ g2

2D r

In vacuum, Regge trajectories of confined mesons.  Baryons?

Solution at μ ≠ 0?  Should be possible, not yet solved.

Thies et al ’00...06: Gross-Neveu model has crystalline structure at μ ≠ 0



Schwinger-Dyson eqs. at large Nc: 3+1 dim.’s

Glozman & Wagenbrunn 0709.3080: in 3+1 dimensions,
     confining gluon propagator, 1/(k2)2 as k2 -> 0:

g2

∫

d3k
eikr

k2

(

1 +
σ

k2

)

∼ g2 σ r , r → ∞
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 ↑ 〈ψψ〉

Involves mass parameter, σ.  At μ = 0, 

Take S-D eq. at large Nc, 
so confinement unchanged by μ ≠ 0.  

Find chiral symmetry restoration at

Hence: in two models at μ ≠ 0, 
chiral symmetry restoration in confined phase

〈ψψ〉 = (.23
√

σ)3

µχ = .11
√

σ



Asymptotically large μ

For μ ~ (Nc)p, p > 0, gluons no longer blind to quarks.  Perturbatively,

Ppert.(µ, T ) ∼ NcNf µ4 F0 , NcNf µ2 T 2 F1 , N2
c T 4 F2 .

First two terms from quarks & gluons, last only from gluons.  Two regimes:
          
μ ~ Nc1/4 ΛQCD : Nc μ4 F0 ~ Nc2 F2 ~ Nc2 >> Nc μ2 F1 ~ Nc3/2.
        Gluons & quarks contribute equally to pressure; quark cont. T-independent.

μ ~ Nc1/2  ΛQCD : New regime: m2Debye ~ g2 μ2 ~ 1, so gluons feel quarks.

     Nc μ4 F0 ~ Nc3 >> Nc μ2 F1 , Nc2 F2 ~ Nc2 .
     Quarks dominate pressure, T-independent.

Eventually, first order deconfining transition can either: 
end in a critical point, or bend over to T = 0: ?



T↑

Td

μ→mq

↓1st order

Phase diagram at Nc = ∞, II

χ sym. 
broken

Chiral transition
Quarkyonic

Deconfined

Hadronic
“Box”

Chirally symmetric

We suggest: quarkyonic phase includes chiral trans.  Order by usual arguments.

Mocsy, Sannino & Tuominen ‘03: splitting of transitions in effective models

But: quarkyonic phase confined.  Chirally symmetric baryons?



Chirally symmetric baryons

B. Lee, ‘72; DeTar & Kunihiro ’89; Jido, Oka & Hosaka, hep-ph/0110005; 
Zschiesche et al nucl-th/0608044.  Consider two baryon multiplets.  One usual 
nucleon, other parity partner, transforming opposite under chiral transformations:

ψL,R → UL,R ψL,R ; χL,R → UR,L χL,R

With two multiplets, can form chirally symmetric (parity even) mass term: 

ψL χR − ψR χL + χR ψL − χL ψR

g1 ψL Φ ψR + g2 χR Φ χL

Also: usual sigma field,                           , couplings for linear sigma model:Φ → UL Φ U
†
R

Generalized model at μ ≠ 0: D. Fernandez-Fraile & RDP ’07...



Anomalies?

‘t Hooft, ‘80: anomalies rule out massive, parity doubled baryons in vacuum:
    No massless modes to saturate anomaly condition

Itoyama & Mueller’83; RDP, Trueman & Tytgat ‘97: 
At T ≠ 0 , μ ≠ 0 , anomaly constraints far less restrictive (many more amplitudes)
   E.g.: anomaly unchanged at T ≠ 0 , μ ≠ 0, but Sutherland-Veltman theorem fails
 
Must do: show parity doubled baryons consistent with anomalies at μ ≠ 0.  
    At T ≠ 0 , μ = 0 , no massless modes.  Anomalies probably rule out model(s).
    But at μ ≠ 0 , always have massless modes near the Fermi surface.

Casher ‘79: heuristically, confinement => chiral sym. breaking in vacuum
    Especially at large Nc, carries over to T ≠ 0 , μ = 0 .  
    Does not apply at μ ≠ 0: baryons strongly interacting at large Nc.

Banks & Casher ’80: chiral sym. breaking from eigenvalue density at origin.
Splittorff & Verbaarschot ‘07: at μ ≠ 0, eigenvalues spread in complex plane.
     (Another) heuristic argument for chiral sym. restoration in quarkyonic phase.



Hadronic

T↑

μB→MN

Deconfined

Quarkyonic

?
χ sym. 
broken Chirally symmetric

Chiral trans.

XCritical end-point Deconfining trans.

Guess for phase diagram in QCD
Pure guesswork: deconfining & chiral transitions split apart at critical end-point?
Line for deconfining transition first order to the right of the critical end-point?
Critical end-point for deconfinement, or continues down to T=0?



Hadronic

T↑

μB→MN

Deconfined

Quarkyonic

?χ sym. 
broken Chirally symmetric

Chiral transition


